OUTLINE O	Model with factorized Gaussian posterior $^{\odot}$	Computing ELBO	Appendix: cost functi

Model 1: VAE with factorized Gaussian posteriors

Prashant Shekhar

March 23, 2023

ons

Table of Contents

1 Model with factorized Gaussian posterior

2 Computing ELBO

3 Appendix: cost functions

\sim	Η	1 1	Π
υυ	1 L	.11\	
0			

The model

The **inference/encoding** model: $q_{\phi}(z|x)$:

```
EncoderNeuralNet<sub>\phi</sub>(x) \rightarrow (\mu, log \sigma)

\epsilon \sim N(0, I)

z = \mu + \sigma \odot \epsilon
```

Here \odot is an elementwise product.

- This is equivalent to saying $q_{\phi}(z|x) \equiv N(\mu, \Sigma)$, where μ and Σ are mean and covariance matrices and both of these are learnt by encoder neural network.
- Particularly Σ is a diagonal covariance matrix with squared elements of σ vector on the diagonal.
- The diagonal nature of Σ in the gaussian model $N(\mu, \Sigma)$ for the posterior $q_{\phi}(z|x)$ makes it a **factorized gaussian posterior**.

The **generative/decoding** model: $p_{\theta}(x|z)$

 $DecoderNeuralNet_{ heta}(z)
ightarrow \hat{x}$

OUTLINE ○	Model with factorized Gaussian posterior $^{\circ}$	Computing ELBO ●○○	Appendix: cost functions
Computi	ng ELBO		

From previous lectures we know:

$$\mathcal{L}_{ heta,\phi}(x) = \mathsf{E}_{q_{\phi}(z|x)}[log(p_{ heta}(x,z)) - log(q_{\phi}(z|x))]$$

But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence we have:

$$\begin{aligned} \mathcal{U}_{\theta,\phi}(\mathbf{x}) &= -\mathcal{L}_{\theta,\phi}(\mathbf{x}) \\ &= -\mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(\mathbf{x},z)) - log(q_{\phi}(z|\mathbf{x}))] \\ &= \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(q_{\phi}(z|\mathbf{x}))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(\mathbf{x},z))] \\ &= \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(q_{\phi}(z|\mathbf{x}))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(x|z)p_{\theta}(z))] \\ &= \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(q_{\phi}(z|\mathbf{x}))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(x|z)) + log(p_{\theta}(z))] \\ &= \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(q_{\phi}(z|\mathbf{x}))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(z))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(x|z))] \\ &= \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(q_{\phi}(z|\mathbf{x}))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(x|z))] - \mathbf{E}_{q_{\phi}(z|\mathbf{x})}[log(p_{\theta}(x|z))] \end{aligned}$$

OUTLINE O	Model with factorized Gaussian posterior $_{\rm O}$	Computing ELBO ○●○	Appendix: cost functions

Computing ELBO

contining from previous slide ..

$$\begin{aligned} \mathcal{U}_{\theta,\phi}(x) &= \mathbf{E}_{q_{\phi}(z|x)} \left[log \left[\frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right] \right] - \mathbf{E}_{q_{\phi}(z|x)} [log(p_{\theta}(x|z))] \\ &\approx \underbrace{\mathbf{E}_{q_{\phi}(z|x)} \left[log \left[\frac{q_{\phi}(z|x)}{p_{\theta}(z)} \right] \right]}_{\text{Encoder regularization}} + \underbrace{-log(p_{\theta}(x|z))}_{\text{Decoder reconstruction error}} ; \text{ Monte Carlo estimate} \end{aligned}$$

Here:

- The encoder regularization term is the **KL divergence between** the inference/encoder model $q_{\phi}(z|x)$ and the standard multivariate gaussian $p_{\theta}(z) \sim N(0, I)$. This forces the encoder to learn simpler/meaningful representations by forcing it to be close to a gaussian.
- The decoder reconstruction error term is the **negative conditional likelihood** term which is minimized if the \hat{x} produced by the decoder is very close to the encoder input x.

ERAU

Computing ELBO

Term1: Encoder Regularization For
$$E_{q_{\phi}(z|x)}\left[log\left[\frac{q_{\phi}(z|x)}{p_{\theta}(z)}\right]\right]$$
,

- $q_{\phi}(z|x) \sim N(\mu, \Sigma)$ where Σ is a diagonal matrix with σ_i values on the diagonal.
- $p_{\theta}(z) \sim N(0, I)$
- Hence: $\mu_1 = \mu$, $\mu_2 = 0$, $\Sigma_1 = \Sigma$ and $\Sigma_2 = I$ and assuming $z \in \mathbf{R}^m$
- Therefore:

$$\mathbf{E}_{q_{\phi}(z|x)}\left[\log\left[\frac{q_{\phi}(z|x)}{p_{\theta}(z)}\right]\right] = D_{\mathcal{KL}}(q_{\phi}(z|x)||p_{\theta}(z)) = \frac{1}{2}\left[-\sum_{i=1}^{m}\log\sigma_{i}^{2} - m + \sum_{i=1}^{m}\sigma_{i}^{2} + \sum_{i=1}^{m}\mu_{i}^{2}\right]$$

- Term2: Decoder reconstruction error
 - We can use Mean Squared Error (MSE). Suppose there are *n* samples and every sample has *d* features

$$MSE = (1/nd) \sum_{i=1}^{n} \sum_{j=1}^{d} (x_{ij} - \hat{x}_{ij})^2$$

0	U	Т	L	I	Ν	E

Cost functions

Kullback-Leibler(KL) distance/divergence

- Kullback-Leibler divergence (also called relative entropy and I-divergence), denoted D_{KL}(P||Q), is a type of statistical distance: a measure of how one probability distribution P is different from a second, reference probability distribution Q
- Assuming both P and Q have normal distributions with means μ_1 and μ_2 and variances Σ_1 and Σ_2 respectively. Then KL divergence from Q to P is:

$$D_{\mathcal{K}L}(P||Q) = \mathbf{E}_{P(x)} \left[\log \left[\frac{P(x)}{Q(x)} \right] \right]$$

= $\int [\log(P(x)) - \log(Q(x))]P(x)dx$
= $\frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} - d + Tr(\Sigma_2^{-1}\Sigma_1) + (\mu_2 - \mu_1)^T \Sigma_2^{-1}(\mu_2 - \mu_1) \right]$

OUTLINE	Model with fact

Cross-Entropy loss function

- Also referred to as logarithmic loss, log loss or logistic loss.
- Each predicted class probability is compared with actual class label/probability of 0 or 1.
- Cross-entropy is defined as:

$$L_{CE} = -\sum_{i=1}^{m} p_i \log(q_i)$$

where p_i is the true class label and q_i is the softmax probability of i^{th} class. Also, m is the number of classes.

• For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2, then the true class label vector can be: [0,1,0] and if at the last layer the predicted probabilities are [q₁, q₂, q₃], then the loss is:

$$L_{CE} = -log(q_2)$$

This also shows why cross entropy loss is sometimes equivalent to negative log-likelihood

ERAU

Mean Squared/Sum Squared loss function

- Mainly used for regression problems.
- With *n* samples, if the true target value vector is $y \in \mathbf{R}^n$ and the predicted value vector is $\hat{y} \in \mathbf{R}^n$, then Sum Squared Error (SSE) is:

$$SSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• And, Mean Squared Error (MSE) is:

$$MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

OBI26723 VAE with Factorized Graussian Posteriors ell HOOGZ CHRUNOT POLIZ Z=4+CENN(40-2] ENN(O,I) 10 (1,02] 80(21x)=N(4,02] 20(ZIX) 1.) Pe(Z) NN(O, I) 2.) go(zk): neural network 1 1 1 1 1 3.) Pa(XIZ): neural network review of ML distance I divergence p(x)77 PKL (PIIQ) = Epixillog [OTT] P(x)~N(MI, ZI) $= \frac{1}{2} \left[\frac{1}{12} \left(\frac{1}{12} \right)^{-1} d + Tr \left(\frac{1}{2} \sum_{n}^{-1} \right)^{-1} + \left(\frac{1}{12} \sum_{n$ encoder regularization $go(z|x) = N(u, c^2I) \ge 1$ $D_{x_1}(g_0(z|x))||D_{O}(z)) \qquad p_{\alpha}(z) = N(0, I) \ge 2$ $\int_{z_2} \int_{z_2} \int_{z_2}$ d=m $T_{\Gamma}(\Sigma_{2}^{-1}\Sigma_{1}) = T_{\Gamma}(I\sigma^{2}I) = T_{\Gamma}(\sigma^{2}I) = \sum_{i=1}^{M} \sigma_{i}^{2}$ $(\mu_{2}-\mu_{i})^{T}\Sigma_{2}^{-1}(\mu_{2}-\mu_{i}) = -\mu^{T}I(-\mu) = \sum_{i=1}^{M} \mu_{i}^{2}$ $(\mu_{2}-\mu_{i})^{T}\Sigma_{2}^{-1}(\mu_{2}-\mu_{i}) = -\mu^{T}I(-\mu) = \sum_{i=1}^{M} \mu_{i}^{2}$

 $D_{KL}(g_{\phi}(z|x)||p_{\phi}(z)) = E_{g_{\phi}(z|x)} \log \frac{b_{\phi}(z|x)}{p_{\phi}(z)}$ $= \frac{1}{2} \left[-\sum_{i=1}^{\infty} \log(\sigma_{i}^{2}) - m + \sum_{i=1}^{\infty} \sigma_{i}^{2} + \sum_{i=1}^{\infty} \mu_{i}^{2} + \sum_{i=$ factorized because covariance is diagonal, meaning there are muncaupled 1 a lon 12 million 14 variables sal it have no down at a pay de top at ATTACK IN A STATE A LOBORT

03/30123 VAE REVIEW autoencoder vs variational autoencoder +> Z -> [] > X X= X ZER 1000 X-> autoencoder is for dimensionality reduction; would not create very good images ble it's purpose isn't to find the pdf $\begin{array}{c} \uparrow M : \overline{z} = M + 0 \quad O \in \longrightarrow O \\ \rightarrow 0 \end{array}$ E~N(O,I) VAE's are meant to find the pdg. It's purpose is to create/sample new images