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Model with factorized Gaussian posterior
°

The model

The inference/encoding model: g, (z|x):
EncoderNeuralNety(x) — (1, log o)
e~ N(0,/)
Z=pu+oQ©e

Here ® is an elementwise product.
e This is equivalent to saying gy(z|x) = N(u, %), where i and ¥ are mean and covariance
matrices and both of these are learnt by encoder neural network.
@ Particularly ¥ is a diagonal covariance matrix with squared elements of o vector on the
diagonal.
@ The diagonal nature of X in the gaussian model N(u,X) for the posterior g4(z|x) makes
it a factorized gaussian posterior.

The generative/decoding model: py(x|z)
DecoderNeuralNety(z) — %
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Computing ELBO
@00

Computing ELBO

From previous lectures we know:

Lo,s(x) = Eq,(z}x)[log(po(x, z)) — log(qs(z|x))]
But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence
we have:

Up,o(x) = —Lo,p(x)
= —Eg,(z1x)[log(po(x, 2)) — log(qs(z|x))]

= Eq, (210 [log(qs(2[x))] — Bq,(z|x) [log(pa(x, 2))]
= Eq, (210 [log (9 (2]x))] — B, (21x) [log(pa(x|2) Po(2))]
Eq, (21108 (q6(2[x))] — Eq,(z1llog(pa(x|2)) + log(ps(2))]
= Eq,(z101/08(94(2|x))] — Eqy (21 [/08(Pa(2))] — Eq, (z1x)[log (ps(x|2))]

9e(2|x)

po(2)

q¢(z\x) |]Og [ ] ] Eqd)(z\x) [/Og(pg(X’Z))]
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Computing ELBO
oeo

Computing ELBO

contining from previous slide..

qe(z|x
) = B 8| | | Bttt
~ Egy(zix) | log qf;;é))() +  —log(pe(x|2)) ; Monte Carlo estimate

Decoder reconstruction error

Encoder regularizarion

Here:

@ The encoder regularization term is the KL divergence between the inference/encoder
model g4(z|x) and the standard multivariate gaussian pg(z) ~ N(0, /). This forces the
encoder to learn simpler/meaningful representations by forcing it to be close to a
gaussian.

@ The decoder reconstruction error term is the negative conditional likelihood term
which is minimized if the X produced by the decoder is very close to the encoder input x.
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Computing ELBO
ooe

Computing ELBO

Terml: Encoder Regularization For E%(Z‘X) [IOg lqze((zzI?)H ,

® gg(z|x) ~ N(u,X) where ¥ is a diagonal matrix with o; values on the diagonal.

° pg(Z) ~ N(07 I)
@ Hence: p1 =, p2 =0, X1 =X and X» =/ and assuming z € R™

@ Therefore:

E%(Z|X)[/og[q¢(z|x)H Dki(as(2|x)l|po(2)) l Zl0ga —m+Za +ZM:

po(2)

Term2: Decoder reconstruction error
@ We can use Mean Squared Error (MSE). Suppose there are n samples and every sample
has d features
n d
MSE = (1/nd) > > (xi — %)
i=1j=1
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Appendix: cost functions
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Cost functions
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Appendix: cost functions
0000

Kullback-Leibler(KL) distance/divergence

o Kullback-Leibler divergence (also called relative entropy and I-divergence), denoted
Dki(P||Q), is a type of statistical distance: a measure of how one probability distribution
P is different from a second, reference probability distribution Q

@ Assuming both P and @ have normal distributions with means p1 and p» and variances
31 and X, respectively. Then KL divergence from @ to P is:

Dki(P||Q) = Ep(y) l'og [P(X)H

Q)
— [llog(P(x)) — log(Q())IP(x)dx

1 _
= ['0 :Z: d+ Tr(Z3 ' %0) + (2 — 1) "55 H(p2 — )
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Appendix: cost functions
00@0

Cross-Entropy loss function

@ Also referred to as logarithmic loss, log loss or logistic loss.
@ Each predicted class probability is compared with actual class label/probability of 0 or 1.
@ Cross-entropy is defined as:

m
Lee == pilog(qi)
i=1

where p; is the true class label and g; is the softmax probability of it class. Also, m is
the number of classes.

@ For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2,
then the true class label vector can be: [0,1,0] and if at the last layer the predicted
probabilities are [q1, g2, g3], then the loss is:

Lce = —log(q2)

This also shows why cross entropy loss is sometimes equivalent to negative
log-likelihood
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Appendix: cost functions
0o0e

Mean Squared/Sum Squared loss function

@ Mainly used for regression problems.
o With n samples, if the true target value vector is y € R” and the predicted value vector is

y € R", then Sum Squared Error (SSE) is:

SSS = (vi— )
i=1

@ And, Mean Squared Error (MSE) is:
n

1 N
MSE = - Z(y,' - yi)2
i=1
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