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The model

The inference/encoding model: qϕ(z |x):

EncoderNeuralNetϕ(x) → (µ, log σ)

ϵ ∼ N(0, I)
z = µ + σ ⊙ ϵ

Here ⊙ is an elementwise product.
This is equivalent to saying qϕ(z |x) ≡ N(µ, Σ), where µ and Σ are mean and covariance
matrices and both of these are learnt by encoder neural network.
Particularly Σ is a diagonal covariance matrix with squared elements of σ vector on the
diagonal.
The diagonal nature of Σ in the gaussian model N(µ, Σ) for the posterior qϕ(z |x) makes
it a factorized gaussian posterior.

The generative/decoding model: pθ(x |z)

DecoderNeuralNetθ(z) → x̂
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Computing ELBO

From previous lectures we know:
Lθ,ϕ(x) = Eqϕ(z|x)[log(pθ(x , z)) − log(qϕ(z |x))]

But instead of maximizing ELBO, as before, we prefer to minimize negative of ELBO. Hence
we have:

Uθ,ϕ(x) = −Lθ,ϕ(x)
= −Eqϕ(z|x)[log(pθ(x , z)) − log(qϕ(z |x))]
= Eqϕ(z|x)[log(qϕ(z |x))] − Eqϕ(z|x)[log(pθ(x , z))]
= Eqϕ(z|x)[log(qϕ(z |x))] − Eqϕ(z|x)[log(pθ(x |z)pθ(z))]
= Eqϕ(z|x)[log(qϕ(z |x))] − Eqϕ(z|x)[log(pθ(x |z)) + log(pθ(z))]
= Eqϕ(z|x)[log(qϕ(z |x))] − Eqϕ(z|x)[log(pθ(z))] − Eqϕ(z|x)[log(pθ(x |z))]

= Eqϕ(z|x)

[
log

[
qϕ(z |x)
pθ(z)

]]
− Eqϕ(z|x)[log(pθ(x |z))]
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Computing ELBO

contining from previous slide..

Uθ,ϕ(x) = Eqϕ(z|x)

[
log

[
qϕ(z |x)
pθ(z)

]]
− Eqϕ(z|x)[log(pθ(x |z))]

≈ Eqϕ(z|x)

[
log

[
qϕ(z |x)
pθ(z)

]]
︸ ︷︷ ︸

Encoder regularizarion

+ −log(pθ(x |z))︸ ︷︷ ︸
Decoder reconstruction error

; Monte Carlo estimate

Here:
The encoder regularization term is the KL divergence between the inference/encoder
model qϕ(z |x) and the standard multivariate gaussian pθ(z) ∼ N(0, I). This forces the
encoder to learn simpler/meaningful representations by forcing it to be close to a
gaussian.
The decoder reconstruction error term is the negative conditional likelihood term
which is minimized if the x̂ produced by the decoder is very close to the encoder input x .
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Computing ELBO

Term1: Encoder Regularization For Eqϕ(z|x)

[
log

[
qϕ(z|x)
pθ(z)

]]
,

qϕ(z |x) ∼ N(µ, Σ) where Σ is a diagonal matrix with σi values on the diagonal.
pθ(z) ∼ N(0, I)
Hence: µ1 = µ, µ2 = 0, Σ1 = Σ and Σ2 = I and assuming z ∈ Rm

Therefore:

Eqϕ(z|x)

[
log

[
qϕ(z |x)
pθ(z)

]]
= DKL(qϕ(z |x)||pθ(z)) = 1

2

[
−

m∑
i=1

log σ2
i − m +

m∑
i=1

σ2
i +

m∑
i=1

µ2
i

]

Term2: Decoder reconstruction error
We can use Mean Squared Error (MSE). Suppose there are n samples and every sample
has d features

MSE = (1/nd)
n∑

i=1

d∑
j=1

(xij − x̂ij)2
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Cost functions
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Kullback-Leibler(KL) distance/divergence

Kullback–Leibler divergence (also called relative entropy and I-divergence), denoted
DKL(P||Q), is a type of statistical distance: a measure of how one probability distribution
P is different from a second, reference probability distribution Q
Assuming both P and Q have normal distributions with means µ1 and µ2 and variances
Σ1 and Σ2 respectively. Then KL divergence from Q to P is:

DKL(P||Q) = EP(x)

[
log

[
P(x)
Q(x)

]]

=
∫

[log(P(x)) − log(Q(x))]P(x)dx

= 1
2

[
log |Σ2|

|Σ1|
− d + Tr(Σ−1

2 Σ1) + (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

]
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Cross-Entropy loss function

Also referred to as logarithmic loss, log loss or logistic loss.
Each predicted class probability is compared with actual class label/probability of 0 or 1.
Cross-entropy is defined as:

LCE = −
m∑

i=1
pi log(qi)

where pi is the true class label and qi is the softmax probability of i th class. Also, m is
the number of classes.
For example, if we have 3 classes (1/2/3) and for a sample, the target class is class 2,
then the true class label vector can be: [0,1,0] and if at the last layer the predicted
probabilities are [q1, q2, q3], then the loss is:

LCE = −log(q2)

This also shows why cross entropy loss is sometimes equivalent to negative
log-likelihood
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Mean Squared/Sum Squared loss function

Mainly used for regression problems.
With n samples, if the true target value vector is y ∈ Rn and the predicted value vector is
ŷ ∈ Rn, then Sum Squared Error (SSE) is:

SSS =
n∑

i=1
(yi − ŷi)2

And, Mean Squared Error (MSE) is:

MSE = 1
n

n∑
i=1

(yi − ŷi)2
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